Journal of Approximation Theory 110, 200-228 (2001) ®
doi:10.1006/jath.2000.3540, available online at http://www.idealibrary.com on IDE ):I

Discriminants and Functional Equations for Polynomials
Orthogonal on the Unit Circle

Mourad E. H. Ismail!

Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700, U.S.A.
and

Nicholas S. Witte

Department of Mathematics and Statistics and School of Physics, University of Melbourne,
Victoria 3010, Australia

Communicated by Paul Nevai

Received April 10, 2000; accepted in revised form September 12, 2000;
published online March 21, 2001

We derive raising and lowering operators for orthogonal polynomials on the unit
circle and find second order differential and g¢-difference equations for these polyno-
mials. A general functional equation is found which allows one to relate the zeros
of the orthogonal polynomials to the stationary values of an explicit quasi-energy
and implies recurrences on the orthogonal polynomial coefficients. We also evaluate
the discriminants and quantized discriminants of polynomials orthogonal on the
unit circle.  © 2001 Academic Press
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1. INTRODUCTION

Let w(z) be a weight function supported on a subset of the unit circle
and assume that w is normalized by

[ wo%-t (1)
el =1 i
Let ¢,(z) be the polynomials orthonormal with respect to w(z), that is
d
[ 0O E =00 (12)
Il =1 iC
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A general background to orthogonal polynomial systems defined on the
unit circle can be found in the monographs [33], [10], and [8], while
more recent surveys are to be found in [11], [12] and [24] and from an
interesting perspective, in the course notes of [23]. In this work we first
derive raising and lowering operators for ¢, under certain smoothness con-
ditions on the weight function then use these first order operators to derive
a linear second order differential equation satisfied by the orthogonal poly-
nomials. This will be done in Section 2. These results are unit circle
analogues of the results of Bauldry [2], Bonan and Clark [4], and Chen
and Ismail [5]. The external field [19], [27] is the function v defined by

w(z) =exp(—uv(z)). (L.3)

We illustrate these general results by three examples—the circular Jacobi
polynomials, the Szegé polynomials and the orthogonal polynomial system
defined by the modified Bessel function.

Flowing from the results in Section 2 we derive a functional equation
and relate this to the zeros of orthogonal polynomials defined on the unit
circle in Section 3. This is the analogue of the electrostatic interpretation of
the zeros of orthogonal polynomials defined on the real line, but in this
case analyticity means that the quasi-energy function derived has station-
ary points at the zeros which are saddle-points, not minima. This func-
tional equation implies a general relationship on the orthogonal polyno-
mial system, which is usually expressed as a recurrence relation on the
polynomial coefficients.

In Section 4 we derive g-analogues of Section 2. The external field is now
the function u defined through

(D, w)(z) = —ulgz) w(qz), (1.4)

where D, is the g-difference operator

(D, f)(z2) :=M. (1.5)
z—qz
In other words
w(z)=w(gz)[1 —(1 —q) zu(qz)], lz| = 1. (1.6)

Recall that the discriminant D( f,,) of a polynomials f, is defined by [6]

D(f=r""2 Il (z==z0% i fl2)=y]](z=2z). (17)

I1<j<k<n
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Stieltjes [30], [31] and Hilbert [ 15] evaluated the discriminants of the
classical orthogonal polynomials of Hermite, Laguerre, and Jacobi. Schur
[28] gave an interesting lemma about general orthogonal polynomials
which implies the Stieltjes—Hilbert results when applied to the Hermite,
Laguerre, and Jacobi polynomials. In Section 4 we prove an analogue of
Schur’s lemma for polynomials orthogonal on the unit circle and use it to
give a general theorem on the evaluation of discriminants of orthogonal
polynomials on the unit circle. This is the unit circle analogue of the results
in [18]. It was observed in [21] that, in general, the discriminant (1.7) of
g-orthogonal polynomials does not have a closed form. The appropriate
discriminant for discrete g-orthogonal polynomials is

D(f,, q)=y""2q 2 n (ql/zzj_qu—l/z)(q—l/zzj_qul/z)’ (1.8)
1<j<k<n

if f, 1s as in (1.7). The above discriminant also has the alternate representation

D(fo )=y 2" 2 [  [zi+zi—zz2lg+q7 N1 (19)

1<j<k<n

In particular for a quadratic polynomial Az>+ Bz + C the g-discriminant is
gB*—(1+¢)* AC.

In Section 5 we give an expression for the g-discriminant of polynomials
orthogonal on the unit circle in terms of the coefficients in the recurrence
relations satisfied by the polynomials. As an illustration we evaluate the
g-discriminant of the Rogers—Szegd polynomials [ 32].

2. DIFFERENTIAL EQUATIONS

Recall that if fis a polynomial of degree n then the reciprocal polynomial
is

f*iz)=) agz"7k, it f(z)=) az and a,#0, (2.1)
k=0

[33]. Let ¢, satisfy (1.2) and
$u(z) =K,z"+ 1,z" ~' + lower order terms, xk,>0 for n>0. (2.2)
Then the ¢,’s satisfy the recurrence relations [33, (11.4.6), (11.4.7)]

an¢n(z):Kn+l¢n+l(z)_¢n+l(0) ¢r>l:+l(z)’ (23)
Kn¢n+l(z):Kn+lz¢n(z)+¢n+l(0) ¢r>tk(2) (24)
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If we eliminate ¢ between (2.3) and (2.4) we get the three term recurrence
relation (XI.4, p. 91 in [12])

Kn¢n(0) ¢n+l(z) + Kn71¢n+l(0) Z¢n71(z)
=[#x,0u11(0) + K, 119,(0) 2] §,(2). (2.5)
The x’s and ¢,,(0) are related through [ 33, (11.3.6)]

=2 4:(0)]% (2.6)
k=0

Thus x, (>0) can be found from the knowledge of |#,(0)|. By equating
coefficients of z” in (2.5) and in view of (2.2) we find

Knln+l¢n(0) +K;21—1¢n+1(0) :K;21¢n+1(0) +Kn+lln¢n(0)'

Thus
Knln1=Kni1ly+ 0,(0) ¢ 1(0). (2.7)
From (2.7) it is possible to express /, in terms of the x’s and ¢;(0)’s
n—1 ¢ 0 . 0
l=x, Z w (2.8)
j=0  KGKj+1

The analogue of the Christoffel-Darboux formula is

¢n+l ¢n+1(2) ¢n+l( ¢n+l(

1 —az

(2.9)

S 3@ ul2)

THEOREM 2.1. Let w(z) be differentiable in a neighborhood of the unit
circle, has moments of all integral orders and assume that the integrals

v'(z)=v'(0) ,, dg
‘[Iil—l z—¢ W) i

exist for all integers n. Then the corresponding orthonormal polynomials
satisfy the differential relation

# =01, -z [ TETT gD W
Kn =1 z—¢
rin) [ HE 08T o (2.10)
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Proof. Using the orthogonality relation (1.2) we express ¢,(z) in terms
of the ¢,’s as

9= % 0| BOROHD

n—1 d
=Y )| O T+ TR0+ THD a0 WO

Py IgI=1 i’

where we have integrated by parts, then rewritten the derivative of the
conjugated polynomial in the following way

d T 7
dfg¢n(é)=—éz¢n(é), (2.11)

and used the fact {=1/{ for |{| = 1. Now the orthogonality relation (1.2)
and (2.2) give

B v'(z)—0'({)
_Jml z—( o)

+¢n_l(z>{’“;—l+(n1)’%—l .

n Kn

This establishes (2.10) and completes the proof.
We next apply (2.3) to eliminate ¢ from (2.10), assuming ¢,(0) # 0. The
result is

Tnt g () 4Pz (2)

Pnlz)=n = $.(0)

[ T BT O e
=1 z—¢

) z)— — K,
HihD) | #(0)

Observe that ¢,(0) — 5 ¢(0) is a polynomial of degree n— 1.
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Let
K, Z ) *
A,(z)=n . n(O Zf $.(0) (0 w(() dL, (2.13)
’(C) Ky

_ ¥ . (214
jm_l 40 {qsn(o S PO [ mO . 214)

For future reference we note that 4,=B,=0 and
@ =m =i v -5y ) @15)
By(z) = —v’(z)—ZiE(Z))) M,(2), (2.16)

where the first moment A, is defined by

- V()= L dL
Ml(z)_jm:1 (O (217)
Now rewrite (2.12) in the form
$n(2) =A,(2) §,_1(2) = B,(2) $,(2). (2.18)
Define differential operators L, ; and L, , by
d
L,,= E+B( z), (2.19)
_ i_ Anfl(z) Kn_1 Anfl(z) Kn(bnfl(o)
L”’z_ _dZ Bn_1(2)+ ZKn72 * Kn72¢n(0) (220)

After the elimination of ¢, _; between (2.12) and (2.5) we find that the
operators L, ; and L, , are annihilation and creation operators in the
sense that they satisfy

Ln,l¢n(z)=An(Z) ¢n—1(z)r Ln,2¢n—l(z)=

Hence we have established the second order differential equation

1 _An—l(Z) ¢n—1(0) Ky—1
Ln,2 <14n(z) Ln, 1> ¢n(z) - - ¢n(0) Ko ¢n(z)a (222)

which will also be written in the following way

¢n +P(z) d,+ 0O(2) $,=0. (2.23)
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It is worth mentioning that, unlike for polynomials orthogonal on the
line, L} | is not related to L, ,. In fact if we let

— d
ho=] OO0 %, (224
Il =1 ¢

then in the Hilbert space endowed with this inner product, the adjoint of
L, ,is

(L1 /)2)=2"(2) +2f(2) + [v(z) + B,(2)] f(2). (2.25)

To see this use integration by parts and the fact that for |{|=1,

g(&) =g(1/0).

ExamPLE 1. The circular Jacobi orthogonal polynomials (CJ) are
defined with respect to the weight function
I'*(a+1) 2a
w(z) =3l 2at 1) [1—z] (2.26)
for real a appropriately restricted. We find these to be classical in the sense
of being related to classical orthogonal polynomials defined on the real line
and therefore possessing their properties. They arise in a class of random
unitary matrix ensembles, the CUE, where the parameter « is related to the
charge of an impurity fixed at z=1 in a system of unit charges located on
the unit circle at the complex values given by the eigenvalues of a member
of this matrix ensemble [35]. The orthonormal polynomials are

¢n(z)=¢2Fl(—n,a+l; —n+1—a;z), (2.27)

n! (2a+1),

and the coefficients are

1
o=@t (2.28)
n! (2a+1),
n= i~ n nxzl, (2.29)
n+a
a
$.(0)= K, n=0. (2.30)
n+a
The reciprocal polynomials are
1
b3 = A D P —n—a:), @231)

n! (2a+1),
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Using the differentiation formula and some contiguous relations for the
hypergeometric functions, combined in the form

d
(1—z)—=—,F(—na+1;1—n—a;z)
dz

_n(n+2a)
n—1+4a
—nm,Fi(—n,a+1;1—n—a; z), (2.32)

JFi(l—nya+1;2—n—a;z)

one finds the differential-recurrence relation
(1—z)¢,=—ng,+ [n(n+2a)1"*¢,_,, (2.33)

and the coefficient functions

2
A (z) =Yt 20) (2.34)
11—z
B(z)=—. (2.35)
11—z
The second order differential equation becomes

l—-n—a 2a+1 1
g, e 2] mar D, (236)

z 11—z z(1—2z)

ExaMpPLE 2. We consider a generalization of the previous example, to
the situation where

Ia+b+1)

:2—1—2a—2b
wz) Ta+12) I(b+172)

11— z|2% |1 + 2|2, (2.37)

with x=cos 6, and the associated orthogonal polynomials are known as
Szegé polynomials [33]. They are related to the Jacobi polynomials via
the projective mapping of the unit circle onto the interval [ —1, 1],
2 3[z4+z7 ] =x=cos 0,

2o (2) = AP ROz 421
+iB[z—z 1] Pt 2Dz 4 271]),  (2.38)

21, _a(2) = CPE VRO (2 4271
+1iD[z—z7 1] Pl 2o (A2 4 271]). (2.39)
In their study of the equilibrium positions of charges confined to the unit

circle subject to logarithmic repulsion Forrester and Rogers considered
orthogonal polynomials defined on x which are just the first term of 2.38.
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Using the normalization amongst the even and odd sequences of polyno-
mials, orthogonality between these two sequences and the requirement that
the coefficient of z =" on the right-hand side of (2.39) must vanish, one finds
explicitly that the coefficients are

[ nl(a+b+1), "2
A_{(aJrl/Z) (b+1/2)n} ’ (2.40)
=2 (2.41)
(n—1)(a+b+1), "
{ (a+1/2), b+1/2)n} ’ (2.42)
:WC (2.43)

Furthermore the following coefficients of the polynomials are found to be

o (a+b+1),, ’ (2.44)
S (a+b+1),(a+1/2),(b+1)2),
1
Kom_y =217 (@bt Daons . (245
=D (a+b+1),_(a+1/2),(b+1/2),
a—>b
lZn: an2n, (246)
a—>b
lyy—1=(2n— l)mKZn—l» (2.47)
a+b
$2,(0) “mtatp (2.48)
a—>b
$2,—1(0) mtatb_1 w1 (2.49)
The three term recurrences are then
—b)/nn+a+>b)¢,,(z)
+2(a+b) J(n+a—12)(n+b—1/2) z¢,, _o(2)
=[(a+b)2n+a+b—1)+(a—b)2n+a+b)z] ¢y, _1(2), (2.50)

and
Aa+b)JS(n+a—12)(n+b—1/2) ¢ps_1(2)
+2(a—b)/(n—1)(n+a+b—1)z¢,,_2)
—[(a—b)2n+a+b—2)+(a+b)2n+a+b—1)z] ¢, _o(z), (2.51)
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when a # b and both these degenerate to ¢,, _1(z) =z¢,,_,(z) when a=b.
For reference the reciprocal polynomials are

278, (2) = AP IRz 421
—1B[z—z '] PEHPOTID([z4271]), (252)

21 Pg, 1 (2) = CzPE VRO 4 21
—%D[z—z‘l] zPﬁl”fll/z’b“/z)(%[z+Z_1:|). (2.53)
Using the differential and recurrence relations for the Jacobi polynomials

directly one can find the appropriate coefficient functions for the Szegd
polynomials to be

a—b+(a+b)z

Ay 1(2)=2 \/(n +a—12)(n+b—1/2) @b —2)° (2.54)
_dab+(2n—1)[a+b+(a—b)z]
B,,_1(z)= (a—b)(1 —22) > (2.55)
B a+b+(a—>b)z
Ayp(z)=2/n(n+a+>b) Tar b (1-2) (2.56)
_a—b+(a+b):z
By, (z)=2n Tar -2 (2.57)
again when a #b.
ExampLE 3. Consider the weight function
1 _
W(Z):ano(t) exp(3t[z+z71]), (2.58)

where 7, is a modified Bessel function. This system of orthogonal polyno-
mials has arisen from studies of the length of longest increasing sub-
sequences of random words [ 3] and matrix models [26], [ 16]. In terms
of the leading coefficient one has the Toeplitz determinant form

det(l;_1(1))o<jk<n—1

K1) =1o(1) AT (2.59)
The first few members of this sequence are

S U (2.60)

SR OESHUN '

$1(0) 1,(1)

=— 2.61
Ky NG ( )
- 1030~ 13(0) 62
T — L + L -0 o
$2(0) _ Io(1) Iz(f)—I?(l)_ (2.63)

Ky (1) —I3(1)
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Gessel [ 13] has found the exact power series expansions in ¢ for the first
three determinants which appear in the above coefficients. Some recurrence
relations for the corresponding coefficients of the monic version of these
orthogonal polynomials have been known [26], [16], [ 34] and we derive
the equivalent results for x,,, etc.

LEMMA 2.2 [26]. The reflection coefficient r,(t)=¢,(0)/x, for the
modified Bessel orthogonal polynomial system satisfies a form of the discrete
Painleve II equation, namely the recurrence relation

n o,

_le_ 3 =Tpp1 Tt (2.64)

forn=1and ro(t)=1, r(t)= —Il(t)/Io(t).

Proof. First we make a slight redefinition of the external field
w(z) =exp(—uv(z+ 1/z)) for convenience. Employing integration by parts
we evaluate

d
[ H 0= 1) e OB WO G
o -~ d
= [0 O T+, O T BID— O BT O L
=(n+1){ En —K"“}, (2.65)
Kn+1 Kp

for general external fields v(z) using (1.2) and (2.2) in a similar way to the
proof of Theorem 2.1. However in this case v'({+1/{)= —1t/2, a direct
evaluation of the left-hand side yields

1/ !
_t< n o Knlnia > (2.66)
K

2 n+1 Knty1Knyo2

and simplification of this equality in terms of the defined ratio and use of
(2.8) gives the above result.

There is also a differential relation satisfied by these coefficient functions
or equivalently a differential relation in ¢ for the orthogonal polynomials
themselves [16], [34].

LemMa 2.3. The modified Bessel orthogonal polynomials satisfy the dif-
ferential relation

d Il(t) ¢n+1(0) Ky :|
T ] e
Kn—l|:1+¢n+l(0) Kp

Kn+1 ¢4(0)

z} b (). (2.67)
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Jor n=1 and 2 $o(z) =0. The differential equations for the coefficients are
2d 5i(1) ¢n+1( $a(0)

d " TI0 T ks (2.68)

2 d () ¢n+1( ) Kn ¢n—1(0) Kn—l
—_— — 2.69
50" e a0 a0 w2

for n=1.

Proof. Differentiating the orthonormality relation (1.2) with respect to
t one finds from the orthogonality principle for m <n —2 that

)+ 22 = (D) H b2 F sy () (270)
for some coefficients a,, b,,, ¢,. The first coefficient is immediately found to
be a,=3K,/K, 1. Con51derat10n of the differentiated orthonormality rela-
tion for m=n—1 sets another coefficient, ¢, = —3x,_,/k,, while the case
of m=n leads to b, =11I,(1)/I,(1). Finally use of the three-term recurrence
(2.5) allows one to eliminate ¢, (z) in favor of ¢,(z), ¢,_(z) and one
arrives at (2.67). The differential equations for the coefficients «,, ¢,(0) in
(2.68, 2.69) follow from reading off the appropriate terms of (2.67).

Use of the recurrence relation and the differential relations will allow us
to find a differential equation for the coefficients, and thus another charac-
terization of the coefficients.

LEMMA 2.4. The reflection coefficient r,(t) satisfies the following second
order differential equation

d? 1 1 1 d \*> 1d n? r
L R S S ¥ )
az' 2<rn+1+rn—l><d1r"> ca T T T (271

with the boundary conditions determined by the expansion

(=31)" n 1, 4
r,,(t)t:O i 1+ n—l—l_é"l Zt +O(t*) ¢, (2.72)
for n=1. The coefficient r, is related by
(1) +1
ra(t) = (=T (2.73)

to z,(t) which satisfies the Painléve transcendent P-V equation with the
parameters

a=f=—, y=0, d=-2. (2.74)
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Proof. Subtracting the relations (2.68,2.69) leads to the simplified
expression

2 d

rn+1_rn—1=1_r2$rn’
n

(2.75)

which should be compared to the recurrence relation, in a similar form

" (2.76)

The differential equation (2.71) is found by combining these latter two
equations and the identification with the P-V can be easily verified.

As a consequence of the above we find that the coefficients for the
modified Bessel orthogonal polynomials can be determined by the Toeplitz
determinant (2.59), by the recurrence relations (2.76) or by the differential
equation (2.71). An example of the use of this last method we note

K20 = Io(1) [1—r2(1)]~ exp< 11'21(;2 > (2.77)

n

We now indicate how to find the coefficients of the differential relations,
A,(z), B,(z) and observe that

viz)=v'(Q) ] 1 1
z—( __2{24“232&}

The above relationship and (2.12) yield

42 =24, () 5|

n 2z

Loty (o . d&

g | GO TTOWO T

t bl [ 00 B0 ST w0 T )
227 = LT 40 iC

Easy calculations using (2.2) give

| a0 -L= 030
$u(0) ¢n(0)¢ (9
= _KLIM ¢ () +lower order terms

“n $,(0)
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and

B30 PuirD) [Kab— K rlos Ly
¢n(0) K"+1 Kn|¢n(0)|2 kn+1Kn

+ lower order terms.

¢(0)

These identities together with (2.79) establish the differential-difference
relation

n+2+§ Kn ¢n(0) 2 Kni1Kn

¢;<z>=”;1[ {0kt $ua(0) 1 §uia(0) 4, (0)

n

} Brr(2)

Ky 1 $ua(0)
2z Kk, 9,(0)

b(2). (2.79)

3. FUNCTIONAL EQUATION AND ZEROS

In this section we continue the development of the previous discussion of
the differential relations satisfied by orthogonal polynomials to find a func-
tional equation and its relationship to the zeros of the polynomials.
Expressing the second order differential equation (2.22) in terms of the
coefficient functions 4,(z) and B,(z) we have

A 0
¢Z+{Bn+Bn—l_A;1/An_Knl nil_ En ¢"*1( )An—l} ;

Ky_» z Kn_2 ¢n(0) "
A,_1B 0
+{B;1_BnAln/An+Ban—l_Kn_l rl at ¢n_1( )An—an
Kn_2 z Kp_2 ¢n(0)

+

Kn—1¢n—1(0)An—1An} ¢, =0. (3.1)

Kn_2 ¢n(0) Z

Now by analogy with the orthogonal polynomials defined on the real line
the coefficient of the ¢ term above can be simplified.

THEOREM 3.1.  Given that v(z) is an meromorphic function in the unit disk
then the following functional equation holds

A
Bn+Bn_l_Kn—l n—l_ Kn ¢n—1(O)An_1:_(n_l)zfl_vf(z)' (32)

Kn_2 Z Kn_2 ¢n(0)
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Proof. From the definitions (2.13,2.14) we start with the following
expression

_K.nfl Anfl _ Kn ¢n71(0)

B,+B,_; s Z s 0(0) A,
_ l Kn ¢n—1(0)
“‘”‘”L*zcnl mm}

_,-¢:f(n0) j [V(z) = "(0)] $u_r bi_ 1w () dL.

Employing the recurrences (2.4, 2.3), and the relation amongst coefficients
(2.6) one can show that the factor in the first integral on the right-hand
side above is

Ky

¢,(0)

Ky

¢n(0) C¢n—1¢n—l = _¢n¢n +¢n ¢n .

_¢n%+ ¢nﬁ_¢n—lm_

Now since |{|?>=1, one can show that the right-hand side of the above is
zero from the Christoffel-Darboux sum (2.9). Consequently our right-hand
side is now

Z K

—o0 s S

i [v'(z) [ @E Q) de— [ 0(0) g B (O |
Taking the first integral in this expression and using the recurrence (2.4)
and the decomposition (¢, _, =k, _,/K,¢,+ 7,_; Where n,, € I1,,, II, being
the space of polynomials of degree at most n, we find it reduces to
—i$,(0)/xc,, from the normality of the orthogonal polynomials. Considering
now the second integral above we integrate by parts and are left with

[ T de+ [ 6, TE WO L,
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and the first term here must vanish as ¢}_; can be expressed in terms of
¢,._1,¢, from (24) but ¢, _, €Il,_,. The remaining integral, the second
one above, can be treated in the following way. Firstly express the con-
jugate polynomial in terms of the polynomial itself via (2.3) and employ
the relation for its derivative (2.11). Further noting that (¢, _,=(n—1)
Pr1+ T2y by =0y 2Ky 1y 1+ 7,5, and O, _r=(n—2) K, _,/
K,_19,_1+7,_, along with the orthonormality relation, the final integral
is nothing but —i(n—1) ¢,,_1(0)/x,_,. Combining all this the final result
is (3.2).

Remark 1. The zeros of the orthogonal polynomial ¢,(z) are denoted
by {z;} 1< <n» and are confined to the convex Hull of the support of the
measure, namely to be strictly confined within the unit circle |z| < 1. One

can construct a real function |7(z,, ..., z,,)| from
n . efu(z]-) )
T(zyy e z) =[] ;" YRS [T (z—z)2% (3.3)
j=1 a(2)) 1<j<k<n

such that the zeros are given by the stationary points of this function. One
might also interpret this function as a total energy function for » mobile
unit charges in the unit disk interacting with a one-body confining poten-
tial, v(z) +1n 4,(z), an attractive logarithmic potential with a charge n —1
at the origin, (n—1)In z, and repulsive logarithmic two-body potentials,
—In(z,—z;), between pairs of charges. However all the stationary points
are saddle-points, a natural consequence of analyticity in the unit disk.
That such this function exhibits stationary properties at the zeros can be
seen by considering the second order differential equation which in view of
the above theorem has the coefficient P(z), namely

P(z)=—m—1)z"'=0v'(z)—A4,/A,,. (3.4)

This function is a perfect differential and consequently the one-body poten-
tial can be constructed from its integral, via the Stieltjes argument. Or
alternatively one can show that the conditions for the stationary points of
function T(z,, .., z,) above lead to a system of equations

(z;) n—1 ¥ 1

A,(z;) zj I<k<mk#j i %k

~

.5%
Then the pairwise sum can be represented in terms of the polynomia

f(2) =TT (=) thus
) VAN

- s
I<k<nk#j%i %k S/'(z)

(3.6)
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and we have the n conditions expressed as
n—1 A (z;

(e Anl)
Zj An(zj)

f,,(sz{_ }f’(zj):O, Vi=1,..n (37)

The result then follows.

Remark 2. The functional equation (3.2) actually implies a very general
recurrence relation on the orthogonal system coefficients x,, ¢,(0). In
general if it is possible to relate the differential recurrence coefficients
A,, B, to these polynomial coefficients, then the functional equation dic-
tates that equality holds for all z, and thus for independent terms in z. For
rational functions this can be applied to the coefficients of monomials in z.

Remark 3. There is another way of deriving the functional equation
(3.2) which we now describe. Equation (2.22) is one way of expressing the
second order differential equation for the orthogonal polynomials, however
one can perform the elimination in the opposite order and find

. _ &0)
e L e e A LG MR

which written out in full is

Ky ﬂ_}cnﬁLl ¢n(0) An+} ;n
Kn_1 Z Kn71¢n+1(0) z
Kn A Bn+1

;;+{Bn+1+3 —A,/A, —

n {B;—BnA;/AﬁB,,HB,,—

n—1 z

_Kner $a0) 4 Pu(0) A, A4, 41

Kn—1Pns (0) B Kn—1Pns1(0) z

B, Kui1 ¢,0) 4

7 Kn71¢n+1(0) }gﬁ” . (39)

Given that the coefficient P(z) for these two forms (3.1, 3.9) must be identi-
cal we have an inhomogeneous first order difference equation, whose
solution is

B +B _Kn—lAn—l_ Kn ¢n—1(0)A
UL K,z Ke_a ¢a(0) T

—(n—1) z7! + function of z only. (3.10)

This function can be simply evaluated by setting n=1, evaluating the
integrals after noting B,=0 and the cancellations, and yields the result

—v'(z).
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ExampPLE 1. We can verify that the general form for the T-function is
correct in the case of the circular Jacobi polynomials by a direct evaluation

.

T(zy,wz) =[] z; 7" 7“0 =2 (z;—= D[] (z,—20)2% (3.11)

1 1<j<k<n

J
where we have used the identity

1—z2=(1—z)a (1—1/z)"=z"%(1 —z)% (z—1)4, (3.12)

on |z| =1 to suitably construct a locally analytic weight function. One can
show that the stationary points for this problem are the solution to the set
of equations

l—n—a 2a+1 1
nTa dAtlioy -0, 1<j<n, (3.13)
Z; 1—z; ik 5 Tk
so that the polynomial f(z) =[];_,(z —z;) satisfies the relations
" —n—a 2a+1
O e e o (3.14)
J

Consequently we find that
z(1=2) f"2)+ f'(2){(1—n—a)(l—z)—(2a+ 1)z} + Qf(z)=0, (3.15)

for some constant Q independent of z, but possibly dependent on n and a
and is identical to the second order ODE (2.36).

ExAMPLE 2. Using the expressions (2.54-2.57) one can verify that the
identity (3.2) holds and in particular becomes

Kn—lAn—l Kn ¢n—1(0)
B,+B,_1— — A, _
D Kela 2 Koz $a(0) :
—1 2 2
_.n _a+b_ a 4 b ’ (3.16)
z z l—z 14z

for both the odd and even sequences. Consequently the coefficients in the
second order differential equation are

P _ n+a+b—1 2a+1 2b+1 a+b
2= = z _1—z+ l+z aFb+(ath)z
_ala+ 1) (142 —=b(b+1)(1—2z)?
Qanl2) =21 z(1—z)[a+b+(a—b)z] (3.17)
0, ()= (2n—1)[a(a+ 1)1 +2)*+b(b+1)(1 —z)*> —2ab(1 —z%)] + 4ab

2(1=z2)a—b+(a+b)z]
(3.18)
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Similarly we can verify that the general form for the 7-function is correct
in the case of the Szegd polynomials by using the identity
1=z |1 +z|®=z"7"%1—-2)*(z—1)* (1 +2)%, (3.20)

to suitably analytically continue the weight function. The stationary points
for this problem are the solution to the following set of equations

l—n—a—>b 2a~|—1+2b+1 aFb
z; l—z, 14z, atb+(a¥bh)z
1
12y —0,  1<j<n (3.21)
jAk Z T

such that the polynomial f(z) =]]7_,(z —z,) satisfies the relations

" , l-n—a—>b 2a+1 2b+1 atb B
f(zf)”(zf'){ z, 1=z, "1+ aib+(a¢b)z,}_o‘
(3.22)
Finally we find that
" ., l-n—a—b 2a+1 2b+1 a¥b
Y (2)”(2){ -z " 142 aib~|—(a$b)z}
+0(2) f(z) =0, (3.23)

for some constant Q independent of z, but possibly dependent on n and a.
The coefficient of the first derivative term is identical to the expression for
P(z) in (3.17).

ExamPLE 3. One can also verify the functional relation (3.2) for the
modified Bessel orthogonal polynomials. Forming the left-hand side of this
identity we find this reduces to

anlAnfl Ky ¢n71 0)

B,+B — — A
"+ ol Ky—»2 z Ky—»2 ¢n(0) nt
:_nil_i_(n_l) Kn ¢n—1(0)

z 22 Kn_1 $a(0)

_Eknkn72 ¢n72(0)+£¢i71(0)
2 Kkiy 900 2 ko,

(3.24)

Now the last three terms on the right-hand side of the above equation sim-
plify to /2 using the recurrence relation (2.64), showing that the general
functional relation holds. In fact, as remarked earlier, this relation implies
the recurrence relation itself.
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4. ¢-DIFFERENCE EQUATIONS
Our first result is a g-analogue of Theorem 2.1.

THEOREM 4.1. If w(z) is analytic in the ring q < |z| <1 and is continuous
on its boundary then

1_ n
(D)2 =" =)
—igpe) [ MM o GG O de
=1
vigo) [ MHTME G . @)
IKl=1

Proof. Expand D, ¢,(z) in a series of the ¢,’s. We get

n—1 - d
=D =] Y 6 B0 L4~ (a0 ] WD) 5

=1 x "o ¢

Break the above integral as a difference of two integrals involving ¢,,({) and
¢,(q{), then in the second integral replace { by {/g. Under such transforma-
tion ¢,({) is transformed to ¢,(g{), since |{| =1. Furthermore (1.4) gives

() =1+ GO~ 1/g)] w(Z). (42)
Therefore
(1 _q)(Dq¢n)(Z)
n—1 di:
[ Y WD b WO
ll=1 x=o i

n—1 d
+ f Y 0D —aleilql) +u()(1 —q) d(g0)] §,(0) w({) 7§

Kl=1 r—o

Ko 2=, i(2) - =g (o)
K

d
HU=a [ 0w 2 02 B WO

The result now follows from (2.9).
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We next substitute for ¢¥(z) in (4.2) from (4.3), if ¢,(0)#0, and
establish

(Dq¢n)(z):An(Z) ¢n—1(2)_Bn(z) ¢n(z)’ (43)
with
_anl l_qn Kyn_1 U(C) (qZ)
A =Pt e | S GO B ) & (44)
I3 F () JRP [ S —
B = —if MO 0| Gl - ST O 43)
The are the g-analogues of (2.13-2.18). Here again we set
L,,=D,+B,(z), (4.6)
_ An—l(z) Kn_1 An—l(z) Kn¢n—l(0)
L”,Z_ _D‘I_B"—I(Z) - ZKp_2 Kn72¢n(0) (47)

The ladder operations are

¢n—1(0) Ky_1 An—l(z)
¢n(0) Kn_2 z

Ln,ld’n(z):An(z) ¢n—l(z)9 Ln,2¢n—l(z):

This results in the g-difference equation

1 n l(z)¢n I(O)Kn 1
Lo (s Lot ) 21 = s Dt g ) (49)

There is also a g-analogue of the functional equation (3.2) which can be
found most simply by exploiting the third Remark to Theorem (3.1).

THEOREM 4.2. If u(z) is analytic in the annular region q < |z| <1 then the
following functional equation for the coefficients A,(z), B,(z) holds

A 0
Bn+Bn,1_Kn_l n—1 Ky ¢n—1( )An,1

Kn_2 z Kn_2 ¢n(0)

:_n—l_u(qZ)_l—Q"il{BjH_"/AJ’] (4.10)

qz q qa /= Ki_1 2

Proof. Two alternative forms of the second order g-difference equation
are possible, namely (4.9) and the following,

z _ Ka94(0)
Ln+1,l</ln(z)Ln+l,2> ¢n(z)_Kn 1¢n+1(0) An+1(z) ¢n(z)' (411)
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These two equations, written out in full are, respectively
A D, A

A42) p () Dudil2)
A,(z) A,(2)
n—l(Z)_ Kp ¢n—1(0) An(qz) An—
n—2 An(z) z Ky_2 ¢n(0) An(Z)

Pl) o)+ ) (o) g, (2)
(0) A,(q2)

A, (z) " ( )

n_144q2) A, _1(2) Bn(Z) w P
Kn—z Ay(2) z Knoz $a(0) A,(2)
+Kn71¢n71( ) A qz)A }

Kn_2 ¢n(0)

D§¢Az)+-{Bqu)+

B 0,42

An—l(z) Bn(z)

(4.12)

and

oy (Aaa) Dy )
D2,2)+ {2950 B, 20+ Byfas)

K A Kyr $00) !
_Kn—l qz _Kn—1¢n+1(0)An(qZ)+qZ}Dq¢n(2)
#0821~ AL D, (21 + 228 B, () ()
e A Bi®) Kasr 640) A7) By)
n—1 qz Kn—1$n1(0) q
K 0A0) ALq) Ay
Kn—1¢n41(0) qz
LB _Kaer 00) Ala)
qz Kp1$ni1(0) gz

A comparison of the coefficients of the first g-difference terms leads to the
difference equation

+

} $.(z) =0. (4.13)

A A
O
_Kn+1 ¢n(0) An(Z)-{— K, ¢n71(O)An71(2):_i‘

Kn_1 ¢n+1(0) Kn_2 ¢n(0) qz

. ) (4.14)
Using the results for the first coefficients
$1(qz)
B.(z)= —u(gz) — M, (z , 4.15
1(2) (q2) 9:00) 1(2) (4.15)
A
o2 _ (o), (4.16)

K_1
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with

Mn=| MM, D
[£l=1

4.17
(—az i (+17)

this difference equation can be summed to yield the result in (4.10).
In the next example we will follow the notation and terminology in [9]
and [1]. The g-shifted factorials are

(a§Q)o3=1> 1—[ 1—(](] 1, n:l,...oroo’

while the multi-shifted factorials are

m
((11,(,12,..., m?q l_[ A, q

Define the inner product

— d:
(fo=] 100 NGES (4.18)

With respect to this inner product the adjoint of L, , is

(L} N)N(2)=22[q— (1= q) zu(z)] Dy f(2) +2f(2) + [ B,(2) + u(z)] f(2),
(4.19)

provided that w(z) is analytic in ¢ <|z| <1 and is continuous on |z| =1
and |z| =¢. The proof follows from the definition of D, and the fact
g(0)=¢g(1/{), when || =1. Observe that as ¢ — 1, the right-hand side of
(4.19) tends to the right-hand side of (2.25), as expected.

ExamPLE. Consider the Rogers-Szegé [32] polynomials {7z | q)},
where

4"z, 4'%/z; q)
27(¢;4) s (4.20)

w(z)=

—k/ZZk

(4 9)n q
o (@G Di(qq)n—



DISCRIMANTS AND FUNCTIONAL EQUATIONS 223
In this case

b5 =—L 1) 00 =L o 4o
" (@D o @), | Seo.

It is easy to see that

f (4.22)

- l—

Thus [u({) —u(qz)]/({—qz) is —1/[(1 —gq) {z]. A simple calculation gives

1_ 3/2
D)) == 4,2
Kn—l¢n—l(z) TR %
YT jMH B0 BHGD WO
which simplifies to
l_ n
(D)2 =T (o) (423)

since x,¢0*(q0) —¢,(0) ¢,(g) is a polynomial of degree n— 1. The func-
tional equation (4.23) can be verified independently by direct computation.

5. DISCRIMINANTS

Schur [28], [33, Sect. 6.71] gave an interesting proof of the Stieltjes—
Hilbert evaluation of the discriminants of the classical orthogonal polyno-
mials of Hermite, Laguerre, and Jacobi. His proof relies on a very clever
observation. Let {p,(x)} be a sequence of polynomials satisfying a three
term recurrence relation

pn(x)z(anx—i—bn)pnfl(x)_Cnpn72(x): l’l>1, (51)
and the initial conditions

po(x)=1;  pi(x)=a;x+by, (5.2)
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together with the conditions a,,_,c, #0, n> 1. Schur [ 28] observed that
n pnfl(xj,n)z(_ n(nfl)/2 H an 2k+1 llz 1 (53)
k=1

where {x;,:1<j<n} is the set of zeros of p,(x).
Let z; , be the zeros of ¢,(z). Following Schur, we let

f[ Pl (5.4)

j=1
Lemma 5.1.  The expression A, is given by

[4,0)]""" ”ﬁl 2

A= i 7, on=24=1 (5.5)
Kn anl j=1
Proof. 1Tt is clear that
n n—1
A"ZKZ—IH (Z]n Zk,n—l)
j=1 k=1
Kooy "o
= n—1 H ¢n(zk,n—1) (56)
kn k=1

The recurrence relation (2.5) we find

Kn_20a(0)
Gz n—1) = —m Zteon—1Pn—2(Za n—1)- (5.7)
Substituting from (5.7) into (5.6) and applying ¢,_,(0)=x,_, ]_[”_1
(—z; ,_1) we establish the two term recurrence relation

_ kb (0]
B e

By direct computation we find 4, =1, so the above two term recursion
implies (5.5).

ExampLE. For the circular Jacobi polynomials the discriminant is given
by

p =< a >"_1[(n—1)!(2a+1)n_1 m2n=1 (a+1)7

_— 5.8
n+a (a+1)2_, o1 JM(2a+1); (58)
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while those for the Szegd polynomials are

p _< a+b >2"—1 (n—1)! (a+b+1),  (a+1/2), (b+1/2),]"
" \2n+a+b [ (a+b+1)>% | }

1 i a+b+1); 2
“a+1/2),(b+172), [ i a+b+ 1), (a+1/2), (b+ 1/2)1} ’
(5.9)
a—b 2n—2
Az"_1=<2nl+a+b>
o[ (= ! <a+b+1)n_1(a+1/2>,,_1(b+1/2>,,_1}"—“2
i (a+b+1)3, ,
x(n—1)(a+b+1),_,
-~ 2n—2
T (a+b+ 1), 2
e /=1 ! ] . (5.10)
i (a+b+1),(a+1/2),(b+1)2),
The resultant of two polynomials f,, and g,, is
R{fn’ gm} :ym H gm(zj)a (511)
j=1
where f,, is as in (1.7). Observe that [ 6, Sect. 100 ]
D(f,)=(=1)""= D2y =L R{f,, [o}- (5.12)

In general let 7 be a degree reducing operator 7, that is (7f)(x) is a poly-
nomial of exact degree n — 1 when f has precise degree n and the leading
terms in f and 7f have the same sign. Define the generalized discriminant

D(f,, T) by

D(fn’ T) ::(71)n(n_1)/2y_1R{fn’ Tfn}

= (=D D2yn=2 [T (T,)(z)), (5.13)

Jj=1

for f,, as in (1.7).

THEOREM 5.2. Let {¢,(z)} be orthonormal on the unit circle and assume
that T is a linear operator such that

Tp,(z) = A,(2) §p—1(2) = B,(2) §,(2). (5.14)
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Let {z; ,: 1 <k <n} be the zeros of §,(z). Then the generalized discriminant
(5.13) is given by

_1n(n—1)/2 0 n—1 n—1 n
(=1 n[¢n() 1< I1 Adzen).  n>o.
k=1

n—1 j=1
(5.15)

D(¢,, T)=

K,K

Proof. Apply (5.14), (5.4) and (5.5).
In the case of the orthonormal Rogers—Szegé polynomials Theorem 4.2
and, (4.21) and (4.23) imply the discriminant formula

(_q)n(n—l)/Z n—1
Dldy. D) =Dl ) =g 11 |

For the Rogers—Szeg6é polynomials we get
IR 078 L
D(A,, q)=(—q)~"" “/2{ — . (5.17)
1 1 (1—q) JEI (4; q);

If one is interested in the limiting case ¢ — 1 then we need to rewrite (5.17)
as

n(n— n(n— (q;q)n}" " {(1—@1}
D(AH, q)=(—q)" "= D2(] —g)ytn=Dj2| L2 2/n ’
(S q) = (—g)"= D2 (1= q) {(1—4)'1 ik
(5.18)

which shows that D(#,, q) — 0, for n>1, when ¢ — 1, as expected since
Az ]q)—>(1+z)"as g— 1.
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